

Nursery lab water tests									
Nursery	Example 1	Example 2	Target ranges						
			Min	Max					
рН	7.6	7.1	5.0	7.0					
Alkalinity (ppm CaCO ₃)	35	242	40	120					
EC (mS/cm)	0.11	1.0	0.0	1.0					
NO3-N (ppm)	0.9	0.0	0	10					
P (ppm)	<0.1	0.3	0	20					
K (ppm)	2	17	0	150					
Ca (ppm)	4.1	167	0	150					
Mg (ppm)	2.3	8	0	75					
SO4-S (ppm)	11	180	0	120					
Fe (ppm)	<0.1	0.0	0.00	2.0					
B (ppm)	0.001	0.1	0.05	5.0					
Na (ppm)	15	28	0	100					
CI (ppm)	Copyrjght 2016.	Paul Fisher,	0	70 14					

Deficiencies and Toxicities

- Too much or too little of a nutrient for healthy growth results in a toxicity or a deficiency
- Toxicities can occur from:
 - essential elements
 - other contaminants (e.g. Al, Na, pesticides)
- Symptoms vary:
 - mobility of the nutrient in plant tissue
 - how the nutrient is used in plant metabolism and growth

See http://www.ces.ncsu.edu/depts/hort/floriculture/def/ for deficiency symptoms of floriculture crops from the state University

Mobility of Nutrients

Mobile Nutrients

- Nitrogen (N)
- Phosphorus (P)
- Potassium (K)
- Magnesium (Mg)

Immobile Nutrients

- Calcium (Ca)
- Iron (Fe)
- Manganese (Mn)
- Zinc (Zn)
- Copper (Cu)
- Boron (B)

Somewhat Mobile

- Sulfur (S)
- Molybdenum (Mo)

Copyright 2016. Paul Fisher, University of Florida.

18

23

Example of deficiency of an immobile nutrient: Iron New leaves Fe cannot be mobilized to growing point Old leaves Copyright 2016. Paul Fisher, University of Florida.

Example of deficiency of a mobile nutrient: Nitrogen New leaves

Nutrient toxicities: tend to accumulate in older tissue because of leaf age

e.g. Boron toxicity

New leaves

Old leaves

Total salt concentration

- Electrical Conductivity (EC in mS/cm), or Total Dissolved Solids (TDS in ppm)
- 1 mS/cm = 1 dS/m = 100 mS/m
 = 1 mmho/cm = 1000 microS/cm
- 1 mS/cm of EC = approx. 700 ppm TDS (but this varies between meters)

Copyright 2016. Paul Fisher, University of Florida.

In greenhouse production, mainly use EC units

- You need an EC meter to measure
 - EC of irrigation water (is the level of contaminants changing?)
 - EC of the substrate (are nutrients deficient, or are salts too high?)
 - EC of nutrient solution (is the dilutor/injector dosing the right amount of water soluble fertilizer?)

Copyright 2016. Paul Fisher, University of Florida.

24

Interpreting EC in the substrate

- You can test substrate-EC with a plug squeeze, saturated paste, 1 soil:1.5 or 2 water, or pour-through test.
- For each type of test, the target EC level varies depending on how much dilution occurs during sample preparation.
- With a pour-through (onsite test), a typical range is
 1.0 to 2.5 mS/cm for young plants.
- With a Saturated Paste Extract (lab test), a typical range is
 0.75 to 1.9 for young plants

Copyright 2016. Paul Fisher, University of Florida.

25

Make sure adequate fertilizer in stock Deficient (argyranthemum) during week 1 probably because of low nutrient reserve in cuttings.

Reported fertilizer type and concentra								
	Grower	ppm N By Week						
	Grower	1	2	3	4			
Calibrachoa and petunia cropsMore than one strategy!	Α	200	200	200	200			
	В	0	200	170	200			
	С	150	200	200	150			
	D	0	300	300	300			
	Е	0	0	150	150			
	F	0	0	1x150 2x300	1x150 2x300			
	G	0	0	200	200			
	Copyright 2010 University	100 5. Paul Fisho of Florida.	_{er,} 100	100	100			

Coated Fertilizers Controlled-Released Fertilizers Other names — Resin-coated, plastic coated, polymer coated

50

Copyright 2016. Paul Fisher, University of Florida.

Take home message

- Provide all the essential nutrients in a moderate amount
- Use electrical conductivity or total dissolved solids as an onsite test
- Use complete nutrient analysis at a lab when problems arise

Copyright 2016. Paul Fisher, University of Florida. 56